Opportunities and constraints for Seasonal Rainfall Forecast application to agricultural decisions in Burkina Faso

Improving seasonal forecast information for managing on-farm decisions Free State University, Bloemfontein, South Africa 20-25 May 2012

Pascal Yaka, Carla Roncoli, Moussa Sanon, Bienvenue J. Sanfo, Léopold Somé, Christine Jost, Paul Kirshen, Gerrit Hoogenboom

SOMMAIRE

- ***Why Seasonal climate forecast?**
- Climate Forecasting & Agricultural Resources
 Project (CFAR)
- ***Ethnographic Research results**
- ***Experimental dissemination results**
- ***Some Feedback of Framers about SCF**
- **Climate Limiting factors on Farmers work**
- ***General Impact on SCF on Farmers in Burkina**
- Conclusion

Why Seasonal climate forecast?

 Africa is one of the most vulnerable continents to climate change & variability, a situation aggravated by the interaction of multiple stressors occurring at various levels

 African farmers have developed several adaptation options to cope with current climate variability but such adaptations may not be sufficient for future changes of climate

 Agricultural production and food security in many African countries and regions are likely to be compromised by climate change & variability

IPCC Chapter 9, Fourth Assessment Report 2007

Why Seasonal climate forecast?

« There is a need to improve and continue to assesss the means by which scientific knowledge and advanced technological products (e.g. early warning systems, seasonal foreasts) could be used to enhance the resilience of vulnerable communities in Africa »

IPCC 2007, Ch9,

p,459

Climate Forecasting & Agricultural Resources Project (CFAR)

US Universities

Host-country partners DM (meteorological service) INERA (ag research)

Regional institutions

AFRICAN CENTRE OF METEOROLOGICAL APPLICATIONS FOR DEVELOPMENT

http://www.fao.org/WAICENT/faoinfo/economic/giews/english/esahel/sah983e/esah-cl.htm

Climate Forecasting & Agricultural Resources Project (CFAR)

Based on mean annual rainfall 1961-90, SDRN-FAO Rome

Climate Forecasting & Agricultural Resources Project (CFAR)

Sahel: livestock, millet, sorghum

CFAR Phase I: 1998-2001

Ethnographic & participatory research

Traditionnal local knowledge Information networks Adaptive strategies

CFAR Phase II: 2002-2004

Experimental dissemination of seasonal forecast

Participatory workshops Radio announcements Intermediaries (extension, relay farmers)

Cultural understandings of rain

Scientists: *measurable amount* Farmers: *unfolding process*

Cultural understandings of rain

Name	Nature	Timing	Duration	Other Phenomena	Impacts/use	Beliefs
Sa kenga	Big rain	Jul-Aug	Several hrs			
Sa serdem	Fine rain	Any time	Variable			
	Abundant	At night	6-8 hrs.	Wind blows	Leaves soil moist for	Marks onset of
Sig saaga	steady		falls steadily, but not violently	before (but not after)	several (5+) days.	season
Sa sika	Localized, from few clouds	Anytime of day, mostly in Aug	very short	No wind or cooling of temp	Does not penetrate soil	Marks poor rainy season
	Heavy	Mornings or nights,	Lasts several hours	Gentle thundering	Good infiltration, moisture lasts long time	Marks favorable rainy season and brings good harvest
Sa nyanga		mostly in July-Aug, rare in recent years				
	Thunder	Early morning or at sunset	Short violent downpour	Violent wind, sharp thunder,	Damages crops, homes, kills animals,	Believed to be invoke or attracted, brings
Sa raogo	storm	Mostly in July-Aug, more frequent in recent years		lightening	causes floods and erosion	bad luck
Bind saga	Moderate	Anytime of the day, April	1-2 hrs	Wind,	People use to make mud for house repair, also stimulate growth of roofing grass	

Typology of rain events among the Mossi of the Central Plateau, Burkina Faso

Farmer forecasting knowledge

Pluralistic, dynamic systems, drawing from:

Environmental observations Moon and star cycles Traditional divination Islamic scriptures

Farmer forecasting knowledge

Place-based, contextualized Grounded in daily experience

TABLE 1 Local Trees Bonam Farmers Use as Indicators for Forecasting Rainfall

Moré	French	Scientific ^a	Fruits ripen	Indicates
kankanga	figuier	Ficus gnanphalocarpa (Miq.) Steud. ex A. Rich.	May/June	Water table near ground surface
sibga	raisinier	Anogeissus leiocarpus (DC) Guill & Perr	May/June	Abundant fruit yield = abundant rainfall
lenga	citronnier de mer	Xymenia Americana L.	May	Abundant fruit yield = abundant rainfall
taanga	karité	Butyrospermum parkii (G. Don) Kotschy	June	Abundant fruit yield = abundant rainfall
roanga	carroubier africain	Parkia biglobosa (Jacq.) R.Br. ex G. Don f.	March/April	Abundant fruit yield = abundant rainfall
pusga	tamarinier	Tamarindus indica L.	June	Abundant fruit yield = abundant rainfall
sabtuloga	bouleau d'Afrique	Lannea acida A. Rich.	April	Abundant fruit yield = scarce rainfall
no bga	prunier	Sclerocarya birrea (A. Rich.) Hochst.	May	Abundant fruit yield = scarce rainfall

Roncoli et al. Society and Natural Resources, 2002

Adaptive strategies

Sorghum Varieties								
Name	Cycle	Appearance	Requirements	Consumption	Storage			
belko	120-150	white grain, black husk	old variety, grown in lowlands, needs fertile soils, good land prep, abundant rainfall	makes best toh, (milky white, smooth texture, most filling); hard heavy grains (contain more flour)	7-10 yrs			
balinga	120	white grain, black husk, long heads, smaller grain than <i>belko</i>	old variety, still grown in fertile valley bottoms or manured, managed fields (zai, mulching)	makes very good <i>toh</i> : flour swells when cooking, heavy texture, nutty flavor, also known as <i>saomui</i> (= "better than rice")	2-4 yrs			
gambré	120	dark gray grains, black husk, compact heads	as above	some dislike color (grey) for <i>toh</i> but like its buttery texture, highly nutritious	6-7 yrs			
yadega	70-90	white grain, black or red husk, compact head	cluster of varieties imported from the North (Yatenga)	same as piswopoi	new (yet to be tested)			
kazemiiga kazemiuugu	70-90	red grains, red husk	less demanding of water and fertility than white varieties, less responsive to manure, needs well drained soils	people dislike <i>toh</i> because of red color, used mostly for <i>dolo</i> beer, used for customary rituals and traditional medicine	>l yr			
piswopoi	70-90	long heads (up to 50cm)	cluster of shorter-term varieties, adopted because of shortening of rainy season; productive if it rains	less preferred than traditional varieties, but generally accepted	>2 yrs			
pieolgo fibmiugu kurbulli		white grain, black husk white grain, red husk white grain, black husk	adequately, withstand water deficits after grain formation, suffer if rain is heavy	<i>pielogo</i> makes thick white <i>toh</i> , similar to maize	<i>fibmiugu</i> loses grains, stores poorly			
magadje ¹³ mwaga	60+	round heads, double grained	interplanted with maize on mamired fields; may derive from varieties tested by INERA on local farms	unpalatable, stores poorly when threshed, vulnerable to termites	<l td="" yr<=""></l>			
pisnu	50	white grain, black husk	recovers well from water deficit, but needs better soils, susceptible to weeds (hence higher labor input); also vulnerable to pests before and after harvest; grown around compound together with maize (to be eaten before other varieties are harvested); planted in case of late onset of rains (after other varieties failed)	difficult to cook, flour does not swell when cooking, needs good sauce to accompany unpalatable toh, not filling, weak texture, does not keep (remainder must be sold after one year) market sellers deny that the sorghum they are selling is pisnu since nobody would huw it	<1 yr			

Agricultural adaptations

Location & size of planted areas Crop & variety selection Land management Labor allocation Input application

Livestock adaptations

Placement of corrals Transhumance decisions Feeding regimes Vet treatments Marketing

Participatory workshops

I. Discussion of farmers' own forecasts

II. Presentation of forecast

How the forecast is produced Comparison of forecasts and rainfall for last 5 years Limits of forecasts (scale, parameters Practical exercises (probabilities explicitly presentation of forecast

III. Group discussions

Potential adaptive strategies Village-based dissemination

Representing & learning probabilities

Assessing the role of participation

How does group interaction affect the understanding & uptake of uncertain climate information?

Social exclusions

GenderFactionEthnicityVillageCaste

How producers who did not attend workshops received the forecast (N=70)

How producers understood probability

Non participants (N=46)
Participants (N=89)

Non participants (N=46)
Participants (N=89)

■Non-participants (N=46) Participants (N=89)

Evaluation of forecast by farmers

Non-participants (N=26)

Participants (N=52)

I used the forecast in choosing seed varieties. I started with *kurbulli* (70-day sorghum variety), and after the workshop I continued with the same variety. The forecast gave me assurance to keep doing so. Otherwise I would have planted *pisnu* (50-day variety) because it was late. The problem with *pisnu* is that the weight of the harvest is less and it spoils easily. That is why we prefer planting *kurbulli* if we know that the rains will be enough.

By late June I was afraid to keep planting because I thought it was too late, but the forecast gave me courage. So I was not afraid of planting late and continued planting till the end of the planting period, because I had seen the signs of a good season and the forecast confirmed them. For instance the trees were already flowering in April and there were many ants and mosquitoes after each rain in May.

The forecast encouraged me to plant more sorghum. I chose sorghum because it was the end of the planting period and I was not sure that maize would make it. At first I doubted the forecast but then it started to rain well. The decision was based mostly on the fact that it had started to rain well, but it was supported by the forecast.

... it must be noted that at the beginning of the season us farmers were afraid because of a difficult onset of the rains, some farmers had to plant five times before rains got established in July. Today we can thank God that we continue to receive rain and the harvest will be good this year, there is the proof...

General Impact on SCF on Farmers in Burkina

- **Evaluation criteria included both material and non-material considerations allows that :**
- significant differences were found between farmers who had attended workshops and farmers who had not attended.
- participants were more likely to share the information with others,
- to understand the probabilistic aspect of the forecasts and their limitations,
- to use the forecast in making management decisions,
- to use forecast in a wider range of responses.
- * Also for the farmers who had not participated in the workshop (albeit in a more limited way than participants)
- they received the forecasts through various means
- They shared it with others through various means,
- They understood the forecast and modified their production strategies in response to it
- Interviews reveal that most farmers were satisfied with their decisions and found the forecasts to be accurate and useful.

Limiting factors - should improve research on :

Technical

Seed varieties Soil & water conservation Timing of onset Timing of end Dry spells within season Number of big rains

Institutional

Land access Farmer organizations Rural communication Farm credit Markets Diversification options

Participative workshop can facilitate farmers' ability to use climate forecasts and should be a central part of adaptation policies and plans

 Social capital and social learning are key to adaptive management and should be reinforced by policies and integrated into plans

• Farmers' ability to select among adaptive options can be improved by effective climate-based decision support systems (DSS)

• DSS must be grounded in an understanding of how people use information in making adaptive decisions and what options and constraints they face

 Supportive policies are needed to improve the diversity and flexibility of adaptive options and the effectiveness of climate-based DSS

Thank you!

CNRST

Rural communities

Host-country partners

Institut de l'Environnement et des Recherches Agricoles (INERA) Direction de la Météorologie, Burkina Faso

Regional institutions

